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Abstract

This paper proposes a novel nonlinear fractional-order pandemic model with Caputo deriva-
tive for corona virus disease. A nonstandard finite difference (NSFD) approach is presented
to solve this model numerically. This strategy preserves some of the most significant physical
properties of the solution such as non-negativity, boundedness and stability or convergence to a
stable steady state. The equilibrium points of the model are analyzed and it is determined that
the proposed fractional model is locally asymptotically stable at these points. Non-negativity
and boundedness of the solution are proved for the considered model. Fixed point theory is
employed for the existence and uniqueness of the solution. The basic reproduction number
is computed to investigate the dynamics of corona virus disease. It is worth mentioning that
the non-integer derivative gives significantly more insight into the dynamic complexity of the
corona model. The suggested technique produces dynamically consistent outcomes and excel-
lently matches the analytical works. To illustrate our results, we conduct a comprehensive quan-
titative study of the proposed model at various quarantine levels. Numerical simulations show
that can eradicate a pandemic quickly if a human population implements obligatory quarantine
measures at varying coverage levels while maintaining sufficient knowledge.

Keywords: corona virus disease; Caputo fractional derivative; basic reproduction number; local
stability; nonstandard finite difference method.
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1 Introduction

Corona virus disease (COVID-19) is a deadly global epidemic with an unusual high mortality
rate due to the infectious respiratory virus SARS-CoV-2. This virus speards consistently across
individuals and affects the people all over the globe. In the Chinese city of Wuhan, the first attack
of the Corona virus disease occurred around the end of December 2019. It proliferates in many
regions of China before spreading globally to almost 223 Asian, Australian, American and Euro-
pean nations [18, 17, 50]. By February 11, 2022, theWorld Health Organization (WHO) registered
that there would be over 404, 910, 528 confirmed cases and 5, 783, 776 loss of lives worldwide. It
is surprising that the WHO has recorded 2, 473, 605 new cases to date, although verified cases
have risen. However, about 333, 032, 099 persons have been rescued from COVID-19. By February
06, 2022, total of 10, 095, 615, 243 vaccination doses had been given out [34]. The USA, India, Brazil
and France are now the countries with the largest number of positive cases.

The current evidence shows that the respiratory droplets produced by an infected person’s
sneezing, coughing and spitting are the primary routes of Corona virus transmission among the
people [16, 38, 25]. Healthcare workers might get infected while treating Corona patients. Every
personmay get highly sick or die from a Corona infection at any age and anymoment. People over
the age of 60 and those suffering from serious illnesses such as cardiovascular disease, obesity, tu-
mors, diabetes or respiratory problems are at a higher risk of becoming extremely sick with the
Corona virus. They may remain infectious for a more extended period. Without requiring hos-
pitalization, around 5% of people who have symptoms will become severely ill and need special
attention, approximately 80% will get over the viral infection and approximately 15% will become
highly unwell and require oxygen [32]. If the pandemic is not controlled, the virus can be spread
on a vast scale. As a result, it is unavoidable to adopt extensive preventativemeasureswhile caring
for infected individuals.

Computational mathematical techniques are used to model the infections among populations
quantitatively [40, 3]. In the last few decades, mathematical models of infectious disease dynam-
ics have been developed. The most frequent mathematical formulations depict the individual
transition in a community between the compartments, reflecting the scenario of individual infec-
tion with astonishing precision. These compartmental disease models divide a population into
categories based on the infectious status of each person and the growth of the whole population
has been simulated over time. Since the emergence of COVID-19, numerous researchers have
developed and used these models to investigate the dynamical behavior of a Corona virus dis-
ease [13, 29, 24, 5, 47, 31, 54, 19]. These research studies used mathematical models based on
integer-order derivatives with specific limits on the order of the derivatives. The main objective
was to learnmore about the pandemic’s transmission, spread, effect, prevention and controlmech-
anisms. It is essential to formulate an accurate and efficient mathematical analysis of these models
in epidemiology. It is always beneficial to design a technique to restrict the disease’s spread in the
future.

Several researchers have turned to fractional calculus to overcome these limitations, a relatively
new branch of mathematics. Fractional-order differential operators are used in fractional calculus
to explain a range of natural occurrences, truths and facts with nonlocal dynamics and strange
behavior. Because such frameworks depend on the memory strength controlled by order of a
fractional derivative [48, 35, 27, 23, 51, 28]. Several academics have recently discovered and pro-
posed efficient strategies for determining accurate and approximate solutions to the differential
equations containing fractional operators. Many researchers are looking at the epidemic mod-
els employing fractional operators for various infectious diseases because they exhibit a plausible
biphasic reduction in disease contamination [37, 7, 4]. These fractional operators each have their
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own set of advantages and disadvantages. Fractional-order conditions are required for Riemann-
Liouville fractional operators to solve mathematical models. The Caputo operator overcomes this
limitation and the initial conditions with integer-order derivatives with physical relevance may be
used with the Caputo fractional operator [42, 11, 2].

The basic model of Kermack andMcKendrick [33, 14] is used in most of the COVID-19 mathe-
matical models that simulate the dynamics of infectious diseases among a community of humans.
This model subdivides the population into three compartments, i.e, susceptible people S, who
are not affected but at risk of being infected; infectious people I , who are infected and capable
of spreading the disease to others and removed people R, who have recovered or died from the
disease. This basicmodel [14] is often known as the SIRmodelwhich has effectively predicted sev-
eral epidemics, including the Influenza outbreak at the school of England in 1978 and the plague
India in 1905. With the reformulation of this model, more contemporary disease outbreaks have
been modelled, including the SARS epidemic [55], the H5N1 Influenza [15], the H1N1 Influenza
[22] and the Ebola outbreak [10]. The Kermack-McKendrick model is being used in this study
and the reason is that the dynamics of COVID-19 in the population are comparable to the behav-
ior of Influenza. We want to explore the quarantine’s impact on the COVID-19 population. The
quarantine effect is highlighted since it is easier to control than any other factor. The infection rate
has the most significant impact on disease transmission dynamics, yet it is challenging to manage.
The second component is the recovery rate, which we can not maintain in COVID-19 since peo-
ple’s immunity mainly determines it. The government may impose the quarantine rate forcefully,
allowing it to be adequately monitored and overseen. No dought, vaccination does indeed have a
powerful effect on an outbreak. However, we do not include it in our model since we are primarily
interested in simulating the early phase of an epidemic before vaccine manufacturing.

This study extends the continuous integer-order model to fractional-order and transforms it
into a discrete model using the NSFD numerical approach [8, 20, 1]. We anticipate our projected
SIQ fractional model for the dynamical qualities. It has been determined that most classic stan-
dard approaches may become unbounded divergent when applied to a nonlinear system. As the
temporal grid size expanded, these numerical approaches led to negative solutions, severe oscil-
lations, breakups, disorder and solutions not converging to the true steady states. As a result,
developing the NSFD technique is the most effective way to solve our fractional model. Com-
pleting a full numerical analysis of the suggested model will show that the devised scheme is
dynamically consistent. Besides, for some scientific works on a fractional order Zika virus model,
fractional-order six-neuron bi-directional associative memory neural network, the dynamics of
Leptospirosis disease, the diseases in the prey population, the tuberculosis and qualitavie behav-
iors of diffrential equations of second and third order , we referee the readers to the papers in
[9, 49, 21, 39, 41, 43, 44, 45, 52, 53].

The paper is organized as follows. Section 2 outlines the development of the suggested com-
partmental model. The proposed Corona model is described in fractional form is given in Section
3. Section 4 briefly explains the features of the proposed fractionalmodel and somefixed point the-
orems are given in this Section. Section 5 comprises the proofs of the positivity and boundedness
of the solutions. Equilibrium points and the threshold parameter R◦ for the proposed fractional
model are computed in Sections 6 and 7, respectively. Section 8 proved that the model’s equi-
librium points are locally asymptotically stable. To approximate the fractional model’s solution,
we developed the NSFD numerical technique and numerically analyzed the suggested fractional
model in Section 9. The summary of our results is given in Section 10.
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2 The Integer-Order COVID-19 Model

In epidemiology, nonlinear models describe the transmission dynamics of the deadly Corona
virus among a community of humans. Several mathematical models in the literature have been
used with different assumptions based on how the Corona virus epidemic spreads. This section
investigates novel real-world integer order SIQ model [6] of the Corona epidemic for the Saudi
Arabia population data. We investigate a three-dimensional model with three subpopulations, i.e,
susceptible population S(t), infected population I(t) and quarantined population Q(t). The pop-
ulation is homogeneously mixed and disease spreads through direct contact between susceptible
and infected people.

Therefore, the COVID-19 SIQ epidemic model is obtained which is described by a system of
differential equations as follows

dS

dt
= Π− βSI

N
− µ1S,

dI

dt
= β

SI

N
− (δ + α1 + µ1 + µ2)I, (1)

dQ

dt
= δI − (α2 + µ2 + µ1)Q,

where N(t) represents the overall population in the region under examination at any given time
t, which is the sum of all the three subpopulations. Its transmission coefficient is represented by
β. Here, Π and µ1 denotes the total birth rate and the per-capita death rate from causes other than
COVID-19 respectively. Furthermore, the per-capita rate of mortality from COVID-19 is µ2. We
also consider the proportion of infected patients who are found and admitted to quarantine either
at home or at a health care institution as δ and the average period from infection to quarantine
admission is 1/δ. The per-capita recovery rate from COVID-19 is α1 for patients who are not in
quarantine and α2 for those who are.

It is assumed that all of the parameters associated with the system (1) are strictly positive and
the initial conditions are non-negative. Table 1 shows the model parameter values as well as the
initial conditions employed in the numerical results.

3 COVID-19 Model in Caputo Sense

We begin by recalling some basic concepts coresponding to the Caputo and Atangana-Baleanu
fractional operators [36].

Definition 3.1. Let ρ be a positive real integer with the n− 1 < ρ ≤ n, for n ∈ N. The Caputo fractional
derivative of the function ζ(t) of order ρ is defined by

CDρ
t ζ(t) =

1

Γ(n− ρ)

∫ t

0

ζ(n)(t)(t− ω)n−ρ

(t− ω)
dω, (2)
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where ζ(n)(t) = dnζ(t)
dtn . When 0 < ρ ≤ 1, the Caputo fractional derivative of order ρ reduces to

CDρ
t ζ(t) =

1

Γ(1− ρ)

∫ t

0

ζ
′
(t)(t− ω)ρ

(t− ω)
dω. (3)

Clearly, CDρ
t ζ(t) tends to ζ ′

(t) whenever ρ tends to 1.

Definition 3.2. The definition of the associated integral with ρ > 0 is given by

Iρt ζ(t) =
1

Γ(ρ)

∫ t

0

ζ(t)(t− ω)ρ

(t− ω)
dω, 0 < ρ ≤ 1, t > 0. (4)

Definition 3.3. The fractional operator Atangana-Baleanu-Caputo (ABC) with ρ ∈ (0, 1] is defined as
follows

ABC
a Dρ

t ζ(t) =
ABC(ρ)

(1− ρ)

∫ t

a

ζ
′
(t)Eρ

[
− ρ (t− ω)ρ

(1− ω)

]
dω. (5)

Definition 3.4. The definition of the associated ABC fractional integral with ρ > 0 is expressed as

ABC
a Iρt ζ(t) =

(1− ρ)

B(ρ)
ζ(t) +

ρ

B(ρ)Γ(ρ)

∫ t

a

ζ(t)(t− ω)ρ

(t− ω)
dω, ρ ∈ (0, 1]. (6)

To investigate the memory effects and learn more about the epidemic, we reformulate the model
(1)with aCaputo fractional derivative. Therefore, we obtain the fractional-orderCOVID-19model
in the Caputo operator as

CDρ
t S(t) = Π− βSI

N
− µ1S,

CDρ
t I(t) = β

SI

N
− (δ + α1 + µ1 + µ2)I, (7)

CDρ
tQ(t) = δI − (α2 + µ2 + µ1)Q,

for t ≥ 0 and ρ ∈ (0, 1]. The epidemiological region G for the proposed system (7) can be defined
as

G =

{
(S(t), I(t), Q(t)) ∈ R3

+ : 0 < N(t) ≤ Π

µ1
, S(t), I(t), Q(t) ≥ 0

}
. (8)

4 Existence and Uniqueness of Solution

This section looks at the existence and uniqueness of the solution for the fractional model. The
following are the sufficient conditions for the existence and uniqueness of a solution [11, 26].

Theorem 4.1. The fractional model (7) has a unique solution for each non-negative initial condition.

Proof. We are looking for a sufficient condition in the regionG× (0, T ] to ensure the existence and
uniqueness of the solution of fractional-order system, where

G =

{
(S, I,Q) ∈ R3

+; max (|S|, |I|, |Q|) ≤M

}
.
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The strategy employed in [11] is applied. Consider the following mapping

Ψ(η) = (Ψ1(η),Ψ2(η),Ψ3(η)) ,

and

Ψ1(η) = Π− βSI
N
− µ1S,

Ψ2(η) = β
SI

N
− (δ + α1 + µ1 + µ2)I, (9)

Ψ3(η) = δI − (α2 + µ1 + µ2)Q.

We denote η = (S, I,Q) and η̄ = (S̄, Ī, Q̄). For any η, η̄ ∈ G, it follows from (9) that

‖Ψ(η)−Ψ(η̄)‖ = |Ψ1(η)−Ψ1(η̄)|+ |Ψ2(η)−Ψ2(η̄)|+ |Ψ3(η)−Ψ3(η̄)|. (10)

After some simplification (10) can be written as

‖Ψ(η)−Ψ(η̄)‖ = | − µ1(S − S̄)− β

N
(SI − S̄Ī)|+ | β

N
(SI − S̄Ī)− (δ + α1 + µ1 + µ2)(I − Ī)|

+ |δ(I − Ī)− (α2 + µ1 + µ2)(Q− Q̄)|,

which then becomes

‖Ψ(η)−Ψ(η̄)‖ ≤ H1|S − S̄|+H2|I − Ī|+H3|Q− Q̄|, (11)
‖Ψ(η)−Ψ(η̄)‖ ≤ ϕ‖η − η̄‖, (12)

where

H1 = µ1 +
2Mβ

N
, H2 =

2Mβ

N
+ 2δ + α1 + µ1 + µ2, H3 = α2 + µ1 + µ2,

and

ϕ = max{H1, H2, H3}.

Therefore, Ψ(η) fulfills the Lipschitz condition with respect to η. Thus, there exists a unique solu-
tion η(t) of the system (7) with the initial condition η◦ = (S◦, I◦, Q◦) [26]. Hence, the existence
and uniqueness of the solution of the proposed fractional model are established.

Theorem 4.2. There exists a unique solution η(t) ∈ G of the model (7) with initial condition η◦, for each
η◦ = (S◦, I◦, Q◦), ∀ t ≥ 0.

5 Non-Negativity and Boundedness

In this section, we are interested in non-negative and bounded solutions of the fractionalmodel
(7) due to their biological importance. The following result ensures that the solutions of the frac-
tional model are non-negative and bounded.
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Theorem 5.1. Every solution of the proposed fractional model (7) that begin in R3
+ is non-negative and

uniformly bounded.

Proof. We follow the approach used by [11], to prove the boundedness of the solution of the frac-
tional model. Consider, N(t) = S(t) + I(t) +Q(t) is a function and for each µ1 > 0, we have

CDρ
tN(t) + µ1N(t) = CDρ

t S(t) +C Dρ
t I(t) +C Dρ

tQ(t) + µ1N(t)

= Π− µ1S(t)− (α1 + µ1 + µ2)I(t)− (α2 + µ1 + µ2)Q(t) + µ1N(t)

= Π− (α1 + µ2)I(t)− (α2 + µ2)Q(t)

≤ Π. (13)

Using Lemma 9 from [12], then the inequality (13) becomes

N(t) ≤ N(0)Eρ,1(−µ1t
ρ) + ΠtρEρ,ρ+1(−µ1t

ρ), (14)

where Eρ,1 is a function called the Mittag-Leffler. Using Lemma 5 and Corollary 6 in [12], then
inequality (14) becomes

N(t) ≤ Π

µ1
, t→ +∞. (15)

Consequently, all the solutions of proposed fractional model (7) starting in R3
+ are restricted to

the feasible region G, where

G =

{
(S(t), I(t), Q(t)) ∈ R3

+ : N(t) ≤ Π

µ1

}
. (16)

Next, we prove that the non-negativity of the solutions of the fractionalmodel. By the first equality
of model (7), we have

CDρ
t S(t) = Π− βSI

N
− µ1S

≥ −(β
I

N
− µ1)S

≥ −(µ1)S

≥ −C1S, (17)

where C1 = µ1. Using Lemma 9 from [12] and Eρ,1(t) > 0, for any ρ ∈ (0, 1]. So, the inequality
(17) becomes

S(t) ≥ S(0)Eρ,1(−C1t
ρ)⇒ S(t) ≥ 0. (18)

Using the second equality of the model (7), we have

CDρ
t I(t) = β

SI

N
− (δ + α1 + µ1 + µ2)I

=

[
β
S

N
− (δ + α1 + µ1 + µ2)

]
I

≥ −(δ + α1 + µ1 + µ2)I

≥ −C2I, (19)
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where C2 = δ + α1 + µ1 + µ2. Therefore, the corespondinng inequality (19) becomes

I(t) ≥ I(0)Eρ,1(−C2t
ρ)⇒ I(t) ≥ 0. (20)

Using the third equality of the model (7), we have

CDρ
tQ(t) = δI − (α2 + µ1 + µ2)Q

≥ −(α2 + µ1 + µ2)Q

≥ −C3Q, (21)

where C3 = α2 + µ1 + µ2. Therefore,

Q(t) ≥ Q(0)Eρ,1(−C3t
ρ)⇒ Q(t) ≥ 0. (22)

Thus, the non-negative nature of the solutions of the proposed fractional model (7) has been
shown.

Therefore, the proposed fractional model (7) is mathematically well-posed as all the theorems
have proved the existence, uniqueness, boundedness and non-negativity of the solutions of the
model.

6 Equilibrium Points

The equilibriumpoints of the suggested fractionalmodel are examined in this section. Corona-
free and Corona-endemic are the two types of equilibrium points for the considered model. To
get these points, we set the right-hand side of the system (7) equal to zero as

CDρ
t S(t) = CDρ

t I(t) = CDρ
tQ(t) = 0,

which implies that

Π− βSI
N
− µ1S = 0,

β
SI

N
− (δ + α1 + µ1 + µ2)I = 0,

δI − (α2 + µ1 + µ2)Q = 0.

Assuming that P ◦ represents Corona-free equilibrium and P ∗ represents Corona-endemic
equilibrium. For Corona-free equilibrium, I◦ = Q◦ = 0, then Π − µ1S

◦ = 0 and S◦ = Π/µ1.
Thus, P ◦ for the proposed fractional model is

P ◦(S◦, I◦, Q◦) = P ◦
(

Π

µ1
, 0, 0

)
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and Corona-endemic equilibrium point P ∗(S∗, I∗, Q∗) is given by:

S∗ =
1

µ1

[
Π− βI∗

R0

]
> 0,

I∗ =
ΠR0(1− 1/R0)

β(1− 1/R0) + µ1 + µ1δ/(α2 + µ1 + µ2)
> 0,

Q∗ =
δI∗

α2 + µ1 + µ2
> 0,

in the epidemiological region G.

7 The Basic Reproduction NumberR◦

In this part, we use the next-generation matrix approach to determine the basic reproduction
number R◦ for the suggested fractional model (7). In compact form, the reduced system is ex-
pressed as follows

CDρ
tψ = P(ψ)−Q(ψ),

where ψ = (I,Q).

P(I,Q) =

[
βSI
N
0

]
, Q(I,Q) =

[
−(δ + α1 + µ1 + µ2)I
δI − (α2 + µ1 + µ2)Q

]
.

The Jacobian matrices of P and Q at Corona-free equilibrium point P ◦ are

JP(P ◦) =

[
∂P1

∂I
∂P1

∂Q
∂P2

∂I
∂P2

∂Q

]
=

[ βΠ
µ1N

0

0 0

]
,

JQ(P ◦) =

[
∂Q1

∂I
∂Q1

∂Q
∂Q2

∂I
∂Q2

∂Q

]
=

[
−(δ + α1 + µ1 + µ2) 0

δ −(α2 + µ1 + µ2)

]
.

Hence, the spectral radius (R◦) of JP(P ◦)J−1
Q (P ◦) for the proposed fractional model (7) is given

as

R◦ =
βΠ

µ1N(δ + α1 + µ1 + µ2)
. (23)

8 Stability Analysis

This section discusses the stability of the fractionalmodel (7) locally at both equilibriumpoints
[37, 7].
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8.1 Stability of the Corona-Free Equilibrium

Theorem 8.1. The suggested fractional system’s Corona-free equilibrium point P ◦ is locally asymptotically
stable ifR◦ < 1 and unstable ifR◦ > 1.

Proof. For the fractional system (7), the Jacobian matrix at P ◦ can be written as

J (P ◦) =

 −µ1 − βΠ
µ1N

0

0 βΠ
µ1N
− (δ + α1 + µ1 + µ2) 0

0 δ −(α2 + µ1 + µ2)

 . (24)

Therefore, the eigenvalues of the matrix J (P ◦) are

λ1 = −µ1, λ2 = −(α2 + µ1 + µ2), λ3 =
βΠ

µ1N
− (δ + α1 + µ1 + µ2). (25)

The above Eq. (25) shows that λ1 = −µ1 < 0 as µ1 > 0 and λ2 = −(α2 + µ1 + µ2) < 0. As all the
parameters are positive, i.e, α2, µ1 and µ2 > 0. From Eq. (25), λ3 can be written as

λ3 = (δ + α1 + µ1 + µ2)[R◦ − 1].

Therefore,

λ3 < 0⇔ R◦ < 1.

Thus, Corona free equilibriumpointP ◦ is LAS in the epidemiological regionG and unstablewhen
R◦ > 1. Hence, it is proved that the proposed system (7) at P ◦ = ( Π

µ1
, 0, 0) is locally asymptotical

stable forR◦ < 1 and unstable forR◦ > 1.

8.2 Stability of the Corona-Endemic Equilibrium

Theorem 8.2. If R◦ > 1, then the suggested fractional system (7) is considered to be LAS at Corona-
endemic equilibrium point P ∗ but it is unstable forR◦ < 1.

Proof. For the fractional system (7), the Jacobian matrix at P ∗ can be written as

J (P ∗) =

 p11 p12 0
p21 p22 0
0 p32 p33

 , (26)

where

p11 =
βI1
N
− µ1, p12 = −βS1

N
, p21 =

βI1
N
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and

p22 =
βS1

N
− (δ + α1 + µ1 + µ2), p32 = δ, p33 = −(α2 + µ1 + µ2).

We have used Maple software to determine the eigenvalues of the Jacobian matrix J (P ∗), given
as

λ1 = −(α2 + µ1 + µ2), λ2 =
(p11 + p22)−

√
∆

2
, λ3 =

(p11 + p22) +
√

∆

2
. (27)

It is clear that

p11 + p22 < 0, ∆ = (p11 + p22)2 − 4(p11p22 − p12p21) > 0,

when R◦ > 1. From the above Eq. (27), λ1 = −(α2 + µ1 + µ2) < 0 as α2, µ1 and µ2 > 0.
From the preceding arguments, the remaining eigenvalues λ2 and λ3 must be negative. Hence,
the proposed fractional system (7) at P ∗ is locally asymptotical stable, whenR◦ > 1.

9 Numerical Analysis

This part provides a numerical scheme and simulations to validate the theoretical results ac-
quired in the preceding sections. The simulation is carried out with the help of MATLAB. We
use the NSFD approach [46, 30] to obtain numerical results of the proposed fractional model for
different values of ρ. Corona virus disease dynamic behavior throughout time (t) is modelled for
the different values of fractional-order. Numerical simulations presented in this work are briefly
explained.

Table 1: The initial conditions and numerical values of parameters [20].

S◦ I◦ Q◦ Π α1 α2 β µ1 µ2

34e+ 6 1 0 1603 0.014 0.14 0.35 4.62e− 5 0.012

9.1 NSFD Scheme and Simulations

The main purpose of this subsection is to provide a dynamically consistent numerical discrete
framework for the proposed fractional system (7). It is important to note that all model vari-
ables and parameters are non-negative. To achieve a dynamically consistent discrete scheme, we
must verify that the resultant discrete solutions are all non-negative, required to prevent scheme-
dependent instabilities. The NSFD scheme should alsomeet the associated conservation law since
the population is constant. These characteristics will be considered in the development of the nu-
merical scheme.

We have used the algorithm, which is briefly explained in [46, 30]. Then discretize the sug-
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gested fractional model and we obtain

k+1∑
i=0

cρiS
k+1−i = Π− βS

k+1Ik

N
− µ1S

k+1, (28)

k+1∑
i=0

cρi I
k+1−i = β

Sk+1Ik+1

N
− (δ + α1 + µ1 + µ2)Ik+1, (29)

k+1∑
i=0

cρiQ
k+1−i = δIk+1 − (α2 + µ1 + µ2)Qk+1. (30)

Therefore, we design the following recursive formulae for the presented fractional model (7) as

Sk+1 =
Π−

∑k+1
i=1 c

ρ
iS

k+1−i

cρ0 + βIk/N + µ1
, k = 0, 1, 2, . . . , (31)

Ik+1 =
−
∑k+1
i=1 c

ρ
i I
k+1−i

cρ0 − βSk+1/N + (δ + α1 + µ1 + µ2)
, k = 0, 1, 2, . . . , (32)

Qk+1 =
δIk+1 −

∑k+1
i=1 c

ρ
iQ

k+1−i

cρ0 + (α2 + µ1 + µ2)
, k = 0, 1, 2, . . . , (33)

where cρ0 and cρi ’s are calculated using the following recursive formulae

cρ0 = h−ρ, cρi =

(
1− 1 + ρ

i

)
cρi−1, i = 1, 2, 3, . . . , (34)

where h is the time step size.

The numerical analysis helps to decide the function of ρ in the spread and control of COVID-19
in the proposed fractional model (7). For this purpose, we give some illustrations of the suggested
model using a finite-difference technique established by R.E. Mickens. Fig. 1 depicts the impact
of arbitrary fractional-order ρ on each class’s total number of persons. For different values of ρ,
the dynamics of the model are simulated. When the value of ρ is reduced from 1, the number of
susceptible and quarantine persons steadily decline. However, the number of infected persons also
reduces and the curves for each of the individuals S, I andQ straighten, when the value of ρ drops
from 1 to 0.7. It is noted that for ρ = 1, we were at the Corona free equilibrium state, when δ = 0.5
and R◦ = 0.6653. At P ◦, the size of each population is reducing with the decrease of fractional
order ρ from 1. When δ = 0.07, R◦ = 3.6441 and ρ = 1, we analyzed that the subpopulations
converge to the Corona endemic equilibrium state P ∗ = (S∗, I∗, Q∗) as illustrated in Fig. 2. These
are the same results presented in [20] for the integer case. When the value of ρ is reduced from
1, the number of susceptible and quarantine persons steadily increase. However, the population
of infected people also increases and the curves for each of the individuals S, I and Q straighten,
when the value of ρ drops from 1 to 0.7.

9.2 The Impact of Quarantine Policies on Populations

Another successful COVID-19 control technique is a quarantine program that involves isolation
of confirmed infected patients. The aim was to use a long-term quarantine program to control the
spread of COVID-19 from the real data of Saudi Arabia. A numerical approach presents multiple
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numerical simulations under various quarantine levels. This numerical study has produced more
attractive and remarkable consequences to examine the stability pattern of COVID-19 by using the
values of fractional-order ρ = 0.6, 0.7, 0.8, 0.9. All simulations take place over up to 500 days. Fig.
3 shows that when the level of quarantine is raised, the population of susceptible people grows
but the number of infected people gradually reduces. From Fig. 4, it is observed that when the
quarantine rate rises, the number of infected people reduces at first (see for δ = 0.07, 0.14) and
then grows (see for δ = 0.21). In Figs. 5-6, it has been noticed that when the rate of quarantine
increases, the number of susceptible people also increases. It is shown that when the level of
quarantine rises, the population of infected people reduces first (see for δ = 0.07, 0.14) and then
grows (see for δ = 0.21). According to the simulations, lowering the value of fractional-order ρ
and raising the quarantine rate δ led to a significant drop in Corona infected individuals. It is also
worth noting that when the value of ρ lowers and δ rises, the peak size of each class gradually
decreases and eventually flattens towards the time axis. These findings indicate that a proper and
efficient quarantine strategy should be implemented in the absence of vaccines until the pandemic
is eradicated.

Figure 1: When the value of ρ is reduced from 1, the number of susceptible and quarantine persons steadily decline. However, the number
of infected persons also reduces and the curves for each of the individuals S, I and Q straighten, when the value of ρ drops from 1 to 0.7.
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Figure 2: When the value of ρ is reduced from 1, the number of susceptible and quarantine persons steadily increase. However, the npopu-
lation of infected people also increases and the curves for each of the individuals S, I and Q straighten, when the value of ρ drops from 1 to
0.7
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Figure 3: For instance ρ = 0.6, the quarantine impact on the dynamics of the COVID-19 has been modelled. It has been noticed that when
the level of quarantine is raised, the population of susceptible people grows but the number of infected people gradually reduces.

Figure 4: For instance ρ = 0.7, the quarantine impact on the dynamics of the COVID-19 has been modelled. It has been noticed that when
the rate of quarantine is raised, the number of susceptible people grows. It is worth noting that when the quarantine rate rises, the number
of infected people reduces at first (see for ρ = 0.07, 0.14) and then grows (see for ρ = 0.21).
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Figure 5: For instance ρ = 0.8, the quarantine impact on the dynamics of the COVID-19 has been modelled. It has been noticed that when
the rate of quarantine increases, the number of susceptible people also increases. It is shown that when the level of quarantine rises, the
population of infected people reduces first (see for ρ = 0.07, 0.14) and then grows (see for ρ = 0.21).

Figure 6: For instance ρ = 0.9, the quarantine impact on the dynamics of the COVID-19 has been modelled. It has been noticed that when
the rate of quarantine is raised, the number of susceptible people grows. It is important to note that when the period of quarantine rises,
the population of infected people reduces at first (see for ρ=0.07, 0.14) and then increases (see for ρ=0.21).
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10 Conclusions

Corona virus epidemic is being controlled primarily because of the quarantine program. Quaran-
tine’s influence on the disease dynamics has gained very little attention. Using a Caputo fractional
model, we have investigated the transmission dynamics of the Corona virus disease with quaran-
tine effects in this article. The model is initially defined using the ordinary differential equations,
then reformed by employing the fractional operator. A mathematical analysis of the proposed
fractional model has been done and the local stability has been proved for the Corona free and
the Corona endemic cases. The basic reproduction number, the most significant threshold quan-
tity, is described conceptually and quantitatively. To investigate the solution of the model, the
NSFD numerical approach is employed from the literature. The results obtained from the numer-
ical scheme are simulated and it is proved that they are compatible with the analytical results of
the proposed model. Numerical illustrations have been used to show the Corona virus disease’s
long-term dynamical behavior. The main purpose was to see how various fractional-order ρ val-
ues affected the results. The fractional analysis shows that the population of susceptible people
grows as the fractional order ρ falls. The infected and quarantine class sizes are reduced as the
value of ρ decreases. Furthermore, COVID-19 declines gradually and managed by lowering the
fractional-order ρ from 1. The results from the considered fractional model for the various val-
ues of ρ outperform the integer-order model. A second strategy has been presented to minimize
the population of Corona infected cases by decreasing the fractional order ρ and increasing the
quarantine level δ. Therefore, we concluded that could be eradicated a pandemic quickly if a
human population implements obligatory quarantine measures at varying coverage levels while
maintaining sufficient knowledge. Hence, the suggested SIQ fractional model is more efficient in
fitting actual data than the SIQ integer-order model.
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